ALL candidates should attempt this Section.

A1. On the coordinate diagram shown, A is the point $(6,8)$ and B is the point (12, -5). Angle $\mathrm{AOC}=p$ and angle $\mathrm{COB}=q$.
Find the exact value of $\sin (p+q)$.

A2. A sketch of the graph of $y=f(x)$ where $f(x)=x^{3}-6 x^{2}+9 x$ is shown below. The graph has a maximum at A and a minimum at $\mathrm{B}(3,0)$.

(a) Find the coordinates of the turning point at A .
(b) Hence sketch the graph of $y=g(x)$ where $g(x)=f(x+2)+4$.

Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
(c) Write down the range of values of k for which $g(x)=k$ has 3 real roots.

A3. Find the size of the angle a° that the line joining the points $\mathrm{A}(0,-1)$ and $B(3 \sqrt{3}, 2)$ makes with the positive direction of the x-axis.

A4. The diagram shows a sketch of the graphs of $y=5 x^{2}-15 x-8$ and $y=x^{3}-12 x+1$.
The two curves intersect at A and touch at B, ie at B the curves have a common tangent.

(a) (i) Find the x-coordinates of the points on the curves where the gradients are equal.
(ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
(b) The point A is $(-1,12)$ and B is $(3,-8)$.

Find the area enclosed between the two curves.

A5. Two sequences are generated by the recurrence relations $u_{n+1}=a u_{n}+10$ and $v_{n+1}=a^{2} v_{n}+$ P σ.
The two sequences approach the same limit as $n \rightarrow \infty$.
Determine the value of a and evaluate the limit.

A6. For what range of values of k does the equation $x^{2}+y^{2}(+4 k x)(-2 k y)(-k-2)=0$
represent a circle? [END OF SECTION A]

Candidates should now attempt
EITHER Section B (Mathematics 3) on Page six
OR Section C (Statistics) on Pages seven and eight

ONLY candidates doing the course Mathematics 1,2 and 3

 should attempt this Section.B7. VABCD is a pyramid with a rectangular base $A B C D$.
Relative to some appropriate axes,
\rightarrow
VA represents $-7 i-13 j-11 k$
\rightarrow
AB represents $6 \boldsymbol{i}+6 \boldsymbol{j}-6 \boldsymbol{k}$
\rightarrow
AD represents $8 i-4 j+4 k$

K divides BC in the ratio 1:3.
Find $\overrightarrow{\mathrm{VK}}$ in component form.

B8. The graph of $y=f(x)$ passes through the point $\left(\frac{\pi}{9}, 1\right)$.
If $f^{\prime}(x)=\sin (3 x)$, express y in terms of x.

B9. Evaluate $\log _{5} 2+\log _{5} 50-\log _{5} 4$.

B10. Find the maximum value of $\cos x-\sin x$ and the value of x for which it occurs in the interval $0 \leq x \leq 2 \pi$.

ALL candidates should attempt this Section.

A1. The diagram shows a sketch of the graph of $y=x^{3}-3 x^{2}+2 x$.
(a) Find the equation of the tangent to this curve at the point where $x=1$.
(b) The tangent at the point $(2,0)$ has equation $y=2 x-4$. Find the coordinates of the point where this tangent meets the curve again.

5

5

A2. (a) Find the equation of AB , the perpendicular bisector of the line joining the points $\mathrm{P}(-3,1)$ and $\mathrm{Q}(1,9)$.
(b) C is the centre of a circle passing through P and Q . Given that QC is parallel to the y-axis, determine the equation of the circle.
(c) The tangents at P and Q intersect at T .
Write down

A3. $f(x)=3-x$ and $g(x)=\frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x)=f(g(x))$.
(b) If $q(x)=\frac{3}{3-x}, x \neq 3$, find $p(q(x))$ in its simplest form.

A4. The parabola shown crosses the x-axis at $(0,0)$ and $(4,0)$, and has a maximum at $(2,4)$.
The shaded area is bounded by the parabola, the x-axis and the lines $x=2$ and $x=k$.
(a) Find the equation of the parabola.
(b) Hence show that the shaded area, A , is given by
$\mathrm{A}=-\frac{1}{3} k^{3}+2 k^{2}-\frac{16}{3}$.

A5. Solve the equation $3 \cos 2 x^{\circ}+\cos x^{\circ}=-1$ in the interval $0 \leq x \leq 360$.

A6. A goldsmith has built up a solid which consists of a triangular prism of fixed volume with a regular tetrahedron at each end.
The surface area, A, of the solid is given by

$$
A(x)=\frac{3 \sqrt{3}}{2}\left(x^{2}+\frac{16}{x}\right)
$$

where x is the length of each edge of the tetrahedron.
Find the value of x which the goldsmith should use to minimise the amount of gold plating required to cover the solid.

Candidates should now attempt
 EITHER Section B (Mathematics 3) on Pages five and six
 OR Section C (Statistics) on Pages seven and eight

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

B7. For what value of t are the vectors $u=\left(\begin{array}{r}t \\ -2 \\ 3\end{array}\right)$ and $v=\left(\begin{array}{r}2 \\ 10 \\ t\end{array}\right)$ perpendicular?

B8. Given that $f(x)=(5 x-4)^{\frac{1}{2}}$, evaluate $f^{\prime}(4)$.

B9. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another cuboid measuring 17 cm by 9 cm by 8 cm .
Coordinate axes are taken as shown.

(a) The point A has coordinates $(0,9,8)$ and C has coordinates $(17,0,8)$. Write down the coordinates of B .
(b) Calculate the size of angle ABC .

B10. Find $\int \frac{1}{(7-3 x)^{2}} d x$.

B11. The results of an experiment give rise to the graph shown.
(a) Write down the equation of the line in terms of P and Q.

