ALL candidates should attempt this Section.

y 1

Ο

10

a

A(6, 8)

8

13

A1. On the coordinate diagram shown, A is the point (6, 8) and B is the point (12, -5). Angle AOC = p and angle COB = q.

Find the exact value of sin(p+q).

(<i>a</i>)	Find the coordinates of the turning point at A.	4
<i>(b)</i>	Hence sketch the graph of $y = g(x)$ where $g(x) = f(x + 2) + 4$.	
	Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.	2
(<i>c</i>)	Write down the range of values of k for which $g(x) = k$ has 3 real roots.	1

4

x

B(12, -5)

A3. Find the size of the angle a° that the line joining the points A(0, -1) and B(3√3, 2) makes with the positive direction of the x-axis.

A4. The diagram shows a sketch of the graphs of $y = 5x^2 - 15x - 8$ and $y = x^3 - 12x + 1$. The two curves intersect at A and touch at B, ie at B the curves have a common tangent.

(a)	(1) Find the x-coordinates of the points on the curves where th gradients are equal.	e 4
	(ii) By considering the corresponding <i>y</i> -coordinates, or otherwise distinguish geometrically between the two cases found in part (i)	۔ برج 1
(<i>b</i>)	The point A is $(-1, 12)$ and B is $(3, -8)$.	_
	Find the area enclosed between the two curves.	5

A5. Two sequences are generated by the recurrence relations $u_{n+1} = au_n + 10$ and $v_{n+1} = a^2v_n + 16$.

The two sequences approach the same limit as $n \to \infty$. Determine the value of a and evaluate the limit.

A6. For what range of values of k does the equation $x^2 + y^2 (+ 4kx)(-2ky)(-k-2) = 0$ represent a circle? 5

[END OF SECTION A]

Candidates should now attempt

EITHER Section B (Mathematics 3) on Page six

OR Section C (Statistics) on Pages seven and eight

[Turn over

4

3

6

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

B7. VABCD is a pyramid with a rectangular base ABCD.

Relative to some appropriate axes,

 $\overrightarrow{\text{VA represents } -7i - 13j - 11k}$ $\overrightarrow{\text{AB represents } 6i + 6j - 6k}$ $\overrightarrow{\text{AD represents } 8i - 4j + 4k.$

K divides BC in the ratio 1:3. \rightarrow Find VK in component form.

- **B8.** The graph of y = f(x) passes through the point $\left(\frac{\pi}{9}, 1\right)$. If $f'(x) = \sin(3x)$, express y in terms of x.
- **B9.** Evaluate $\log_5 2 + \log_5 50 \log_5 4$.
- **B10.** Find the maximum value of $\cos x \sin x$ and the value of x for which it occurs in the interval $0 \le x \le 2\pi$.

[END OF SECTION B]

SECTION A (Mathematics 1 and 2)

ALL candidates should attempt this Section.

- A1. The diagram shows a sketch of the graph of $y = x^3 3x^2 + 2x$.
 - (a) Find the equation of the tangent to this curve at the point where x = 1.
 - (b) The tangent at the point (2, 0)has equation y = 2x - 4. Find the coordinates of the point where this tangent meets the curve again.

- (b) C is the centre of a circle passing through P and Q. Given that QC is parallel to the y-axis, determine the equation of the circle.
- (c) The tangents at P and Q intersect at T.

Write down

- (i) the equation of the tangent at Q
- (ii) the coordinates of T.

2

2

3

A3.
$$f(x) = 3 - x$$
 and $g(x) = \frac{3}{x}$, $x \neq 0$.

(a) Find
$$p(x)$$
 where $p(x) = f(g(x))$.

(b) If
$$q(x) = \frac{3}{3-x}$$
, $x \neq 3$, find $p(q(x))$ in its simplest form.

6

A4. The parabola shown crosses the x-axis at (0, 0) and (4, 0), and has a maximum at (2, 4).

The shaded area is bounded by the parabola, the x-axis and the lines x = 2 and x = k.

- (a) Find the equation of the parabola.
- (b) Hence show that the shaded area, A, is given by

$$\mathbf{A} = -\frac{1}{3}k^3 + 2k^2 - \frac{16}{3}.$$

- A5. Solve the equation $3\cos 2x^\circ + \cos x^\circ = -1$ in the interval $0 \le x \le 360$.
- **A6.** A goldsmith has built up a solid which consists of a triangular prism of fixed volume with a regular tetrahedron at each end.

The surface area, A, of the solid is given by

$$A(x) = \frac{3\sqrt{3}}{2} \left(x^2 + \frac{16}{x} \right)$$

where x is the length of each edge of the tetrahedron.

Find the value of x which the goldsmith should use to minimise the amount of gold plating required to cover the solid.

[END OF SECTION A]

Candidates should now attempt EITHER Section B (Mathematics 3) on Pages five and six OR Section C (Statistics) on Pages seven and eight

3

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

B7. For what value of t are the vectors
$$u = \begin{pmatrix} t \\ -2 \\ 3 \end{pmatrix}$$
 and $v = \begin{pmatrix} 2 \\ 10 \\ t \end{pmatrix}$ perpendicular?

B8. Given that
$$f(x) = (5x - 4)^{\frac{1}{2}}$$
, evaluate $f'(4)$.

B9. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another cuboid measuring 17 cm by 9 cm by 8 cm.Coordinate axes are taken as shown.

- (a) The point A has coordinates (0, 9, 8) and C has coordinates (17, 0, 8).Write down the coordinates of B.
- (b) Calculate the size of angle ABC.

[Turn over

1

6

.

B10. Find
$$\int \frac{1}{(7-3x)^2} dx$$
.

2.

4

Ì

(a) Write down the equation of the line in terms of P and Q.

It is given that $P = \log_e p$ and $Q = \log_e q$.

(b) Show that p and q satisfy a relationship of the form $p = aq^b$, stating the values of a and b.

 $P \bullet$

1.8

Ο

[END OF SECTION B]