1. $P(-4,5), Q(-2,-2)$ and $R(4,1)$ are the vertices of triangle PQR as shown in the diagram. Find the equation of PS, the altitude from P .

2. Relative to a suitable set of axes, the tops of three chimneys have coordinates given by $\mathrm{A}(1,3,2), \mathrm{B}(2,-1,4)$ and $\mathrm{C}(4,-9,8)$.
Show that A, B and C are collinear.

3. Functions f and g, defined on suitable domains, are given by $f(x)=2 x$ and $g(x)=\sin x+\cos x$.
Find $f(g(x))$ and $g(f(x))$.
4. The position vectors of the points P and Q are $\boldsymbol{p}=\boldsymbol{i}+3 \boldsymbol{j}+4 \boldsymbol{k}$ and $\boldsymbol{q}=7 \boldsymbol{i}-\boldsymbol{j}+5 \boldsymbol{k}$ respectively.
(a) Express $\overrightarrow{\mathrm{PQ}}$ in component form.
(b) Find the length of PQ .
5. (a) Find a real root of the equation $2 x^{3}-3 x^{2}+2 x-8=0$.
(b) Show algebraically that there are no other real roots.
6. The diagram below shows a parabola with equation $y=4 x^{2}+3 x-5$ and a straight line with equation $5 x+y+12=0$.
A tangent to the parabola is drawn parallel to the given straight line.
Find the x-coordinate of the point of contact of this tangent.

7. If x° is an acute angle such that $\tan x^{\circ}=\frac{4}{3}$, show that the exact value of $\sin (x+30)^{\circ}$ is $\frac{4 \sqrt{3}+3}{10}$.
(3)
8. Given that $y=2 x^{2}+x$, find $\frac{d y}{d x}$ and hence show that $x\left(1+\frac{d y}{d x}\right)=2 y$.
9. (a) Show that the function $f(x)=2 x^{2}+8 x-3$ can be written in the form $f(x)=a(x+b)^{2}+c$ where a, b and c are constants.
(b) Hence, or otherwise, find the coordinates of the turning point of the function f.
10. Find the value of $\int_{1}^{4} \sqrt{x} d x$.
11. Express $2 \sin x^{\circ}-5 \cos x^{\circ}$ in the form $k \sin (x-\alpha)^{\circ}, 0 \leq \alpha<360$ and $k>0$.
12. Two identical circles touch at the point $P(9,3)$ as shown in the diagram. One of the circles has equation $x^{2}+y^{2}-10 x-4 y+12=0$.
Find the equation of the other circle.

13. $P Q R$ is an equilateral triangle of side 2 units.
$\overrightarrow{\mathrm{PQ}}=\boldsymbol{a}, \overrightarrow{\mathrm{PR}}=\boldsymbol{b}$ and $\overrightarrow{\mathrm{QR}}=\boldsymbol{c}$.
Evaluate $\boldsymbol{a} \cdot(\boldsymbol{b}+\boldsymbol{c})$ and hence identify two vectors which are perpendicular.

[Turn over
14. For what range of values of c does the equation $x^{2}+y^{2}-6 x+4 y+c=0$ represent a circle?
15. The curve $y=f(x)$ passes through the point $\left(\frac{\pi}{12}, 1\right)$ and $f^{\prime}(x)=\cos 2 x$. Find $f(x)$.
16. The diagram shows a sketch of part of the graph of $y=f(x)$. The graph has a point of inflection at $(0, a)$ and a maximum turning point at (b, c).

(a) Make a copy of this diagram and on it sketch the graph of $y=g(x)$ where $g(x)=f(x)+1$.
(b) On a separate diagram, sketch the graph of $y=f^{\prime}(x)$.
(c) Describe how the graph of $y=g^{\prime}(x)$ is related to the graph of $y=f^{\prime}(x)$.
17. Part of the graph of $y=5 \log _{10}(2 x+10)$ is shown in the diagram. This graph crosses the x-axis at the point A and the straight line $y=8$ at the point B .
Find algebraically the x-coordinates of A and B .

18. (a) Show that $2 \cos 2 x^{\circ}-\cos ^{2} x^{\circ}=1-3 \sin ^{2} x^{\circ}$.
(b) Hence solve the equation

$$
\begin{equation*}
2 \cos 2 x^{\circ}-\cos ^{2} x^{\circ}=2 \sin x^{\circ} \text { in the interval } 0 \leq x<360 . \tag{4}
\end{equation*}
$$

19. The diagram shows a sketch of part of the graph of $y=a^{x}, a>1$.
(a) If ($1, t$) and ($u, 1$) lie on this curve, write down the values of t and u.
(b) Make a copy of this diagram and on it sketch the graph of $y=a^{2 x}$.
(c) Find the coordinates of the point of intersection of $y=a^{2 x}$ with the line $x=1$.

(1)
20. Diagram 1 shows 5 cars travelling up an incline on a roller-coaster. Part of the roller-coaster rail follows the curve with equation $y=8+5 \cos \frac{1}{2} x$.

Diagram 1

Diagram 2 shows an enlargement of the last car and its position relative to a suitable set of axes. The floor of the car lies parallel to the tangent at P , the point of contact.

Calculate the acute angle a between the floor of the car and the horizontal when the car is at the point where $x_{p}=\frac{7 \pi}{3}$.
Express your answer in degrees.
7. In certain topics Marks
7. In certain topics in Mathematics, such as calculus, we often require to write an expression such as $\frac{8 x+1}{(2 x-1)(x-1)}$ in the form $\frac{2}{2 x+1}+\frac{3}{x-1}$.
$\frac{2}{2 x+1}+\frac{3}{x-1}$ are called Partial Fractions for $\frac{8 x+1}{(2 x+1)(x-1)}$
The worked example shows you how to find partial fractions for the expression $\frac{6 x+2}{(x+2)(x-3)}$

Worked Example

Find partial fractions for $\frac{6 x+2}{(x+2)(x-3)}$
Let $\frac{6 x+2}{(x+2)(x-3)}=\frac{A}{x+2}+\frac{B}{x-3}$ where A and B are constants

$$
=\frac{A(x-3)}{(x+2)(x-3)}+\frac{B(x+2)}{(x-3)(x+2)}
$$

ie $\frac{6 x+2}{(x+2)(x-3)}=\frac{A(x-3)+B(x+2)}{(x+2)(x-3)}$
Hence $(x+2=A(x-3)+B(x+2)$ for all values of x.
A and B can be found as follows:

Select a value of x that makes the first bracket zee

Let $x=3$ (this eliminates A)
$18+2=A \times 0+B \times 5$
$20=5 B$
$B=4$
Therefore $\frac{6 x+2}{(x+2)(x-3)}=\frac{2}{x+2}+\frac{4}{x-3}$.
Select a value of x that makes the second bracket zero

Let $x=-2($ this eliminates $B)$
$-12+2=A \times(-5)+B \times 0$

5. Diagram 1 shows a sketch of part of the graph of $y=f(x)$ where $f(x)=(x-2)^{2}+1$. The graph cuts the y-axis at A and has a minimum turning point at B .
(a) Write down the coordinates of A and B .

Diagram 1
(b) Diagram 2 shows the graphs of $y=f(x)$ and $y=g(x)$ where $g(x)=5+4 x-x^{2}$. Find the area enclosed by the two curves.

(c) $g(x)$ can be written in the form $m+n \times f(x)$ where m and n are constants.

Write down the values of m and n.
6. (a)'A sketch of part of the graph of $y=\frac{1}{x}$ is shown in the diagram. The tangent at $\mathrm{A}\left(a, \frac{1}{a}\right)$ has been drawn.

Find the gradient of this tangent.
(b) Hence show that the equation of this tangent is $x+a^{2} y=2 a$.

(c) This tangent cuts the y-axis at B and the x-axis at C .
(i) Calculate the area of triangle OBC .
(ii) Comment on your answer to $c(\mathrm{i})$.
8. The radioactive element carbon-14 is sometimes used to estimate the age of organic remains such as bones, charcoal and seeds.
Carbon-14 decays according to a law of the form $y=y_{0} e^{k t}$ where y is the amount of radioactive nuclei present at time t years and y_{0} is the initial amount of radioactive nuclei.
(a) The half-life of carbon-14, ie the time taken for half the radioactive nuclei to decay, is 5700 years. Find the value of the constant k, correct to 3 significant figures.
(b) What percentage of the carbon-14 in a sample of charcoal will remain after 1000 years?
9. The sketch represents part of the graph of a trigonometric function of the form $y=p \sin (x+r)^{\circ}+q$. It crosses the axes at $(0, s)$ and $(t, 0)$, and has turning points at $(50,-2)$ and $(u, 4)$.
(a) Write down values for p, q, r and u.
(b) Find the values for s and t.

10. A cuboid is to be cut out of a right square-based pyramid. The pyramid has a square base of side 8 cm and a vertical height of 10 cm .

(a) The cuboid has a square base of side $2 x \mathrm{~cm}$ and a height of $h \mathrm{~cm}$.

If the cuboid is to fit into the pyramid, use the information shown in triangle ABC , or otherwise, to show that:
(i) $h=10-\frac{5}{2} x$;
(ii) the volume, V, of the cuboid is given by $V=40 x^{2}-10 x^{3}$.
(b) Hence, find the dimensions of the square-based cuboid with the greatest volume which can be cut from the pyramid.
11. Two identical coins, radius 1 unit, are supported by horizontal and vertical plates at B and C . Diagram 1 shows the coins touching each other and the line of centres is inclined at p radians to the vertical.

Diagram 1

Let d be the length of BC .
(a) (i) Show that $\mathrm{OB}=1+2 \sin p$.
(ii) Write down a similar expression for OC and hence show that $d^{2}=6+4 \cos p+4 \sin p$.
((b)) (i) Express d^{2} in the form $6+k \cos (p-\alpha)$.
(ii) Hence, write down the exact maximum value of d^{2} and the value of p for which this occurs.
(c) Diagram 2 shows the special case where $p=\frac{\pi}{4}$

(i) Show that $\mathrm{OB}=1+\sqrt{2}$ and find the exact length of BD .
(ii) Using your answer to (b) (ii), find the exact value of $\sqrt{6+4 \sqrt{2}}$.

