SCOTTISH CERTIFICATE OF EDUCATION 1994 TUESDAY, 10 MAY 9.30 AM - 11.30 AM MATHEMATICS HIGHER GRADE Paper I

	All questions should be attempted	Marks
1. Find $\int (3x^3 + 4x) dx$.		(3)

2. If $f(x) = kx^3 + 5x - 1$ and f'(1) = 14, find the value of k. (3)

Relative to the top of a hill, three gliders have positions given by R(-1, -8, -2), S(2, -5, 4) and T(3, -4, 6). Prove that R, S and T are collinear. (3)

(3)

5. The circle shown in the diagram has equation $(x-1)^2 + (y-1)^2 = 5$.

Tangents are drawn at the points (3, 2)and (2, -1).

Write down the coordinates of the centre of the circle and hence show that the tangents are perpendicular to each other.

6. Find algebraically the exact value of $\sin\theta^{\circ} + \sin(\theta + 120)^{\circ} + \cos(\theta + 150)^{\circ}$. (3)

1994

7. If
$$\boldsymbol{u} = \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix}$$
 and $\boldsymbol{v} = \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}$, write down the components of $\boldsymbol{u} + \boldsymbol{v}$ and $\boldsymbol{u} - \boldsymbol{v}$.
Hence show that $\boldsymbol{u} + \boldsymbol{v}$ and $\boldsymbol{u} - \boldsymbol{v}$ are perpendicular. (3)

Hence show that u + v and u - v are perpendicular.

- 8. The straight line y = x cuts the circle $x^2 + y^2 6x 2y 24 = 0$ at A and B.
 - (a) Find the coordinates of A and B.

 - (b) Find the equation of the circle which has AB as diameter. (3)

9. A sequence is defined by the recurrence relation	
$u_n = 0.9u_{n-1} + 2, u_1 = 3.$	
(a) Calculate the value of u_2 .	(1)
(b) What is the smallest value of n for which $u_n > 10$?	(1)

- (2) (c) Find the limit of this sequence as $n \to \infty$.
- 10. Find the derivative, with respect to x, of $\frac{1}{x^3} + \cos 3x$. (4)
- 11. Show that $x^2 + 8x + 18$ can be written in the form $(x + a)^2 + b$. Hence or otherwise find the coordinates of the turning point of the curve with equation $y = x^2 + 8x + 18$. (3)
- 12. The diagram shows the graph of the function $y = a + b \sin cx$ for $0 \le x \le \pi$.

(a) Write down the values of a, b and c.

(3)

(3) (b) Find algebraically the values of x for which y = 2.5.

31

(2)

(3)

(6)

x

 $y = 4x - x^2$

y = x

13. If $\cos\theta = \frac{4}{5}$, $0 \le \theta < \frac{\pi}{2}$, find the **exact** value of (a) $\sin 2\theta$

(b) $\sin 4\theta$.

16.

14. Find the gradient of the tangent to the parabola $y = 4x - x^2$ at (0, 0).

> Hence calculate the size of the angle between the line y = x and this tangent.

1994

y

(5)

The diagram shows a sketch of part of the graph of $y = \log_5 x$.

- (a) Make a copy of the graph of $y = \log_5 x$. On your copy, sketch the graph of $y = \log_5 x + 1$. (3) Find the coordinates of the point where it crosses the x-axis.
- (b) Make a second copy of the graph of $y = \log_5 x$. (2) On your copy, sketch the graph of $y = \log_5 \frac{1}{x}$.

- 17. Differentiate $\sin^3 x$ with respect to x. Hence find $\int \sin^2 x \cos x \, dx$.
- 18. The diagram shows a point P with coordinates (4, 2, 6) and two points S and T which lie on the x-axis. If P is 7 units from S and 7 units from T, find the coordinates of S and T.
- 19. A function f is defined on the set of real numbers by

$$f(x) = \frac{x}{1-x}, \quad (x \neq 1).$$

1994

Find, in its simplest form, an expression for f(f(x)).

20. The diagram shows part of the graph with equation $y = 3^x$ and the straight line with equation y = 42. These graphs intersect at P.

Solve algebraically the equation $3^x = 42$, and hence write down, correct to 3 decimal places, the coordinates of P.

Ο

 \mathcal{Y}

(4)

(3)

[END OF QUESTION PAPER]

 $y = 3^x$

 $\overline{v} = 42$

x

SCOTTISH CERTIFICATE OF EDUCATION 1994

MATHEMATICS HIGHER GRADE Paper II

Marks

(2)

All questions should be attempted

- 1. The graph of the curve with equation $y = 2x^3 + x^2 13x + a$ crosses the x-axis at the point (2, 0).
 - (a) Find the value of a and hence write down the coordinates of the point at which this curve crosses the y-axis.(3)
 - (b) Find algebraically the coordinates of the other points at which the curve crosses the x-axis.(4)

2. ABCD is a square. A is the point with coordinates (3, 4) and ODC has equation $y = \frac{1}{2}x$.

- (a) Find the equation of the line AD. (3)
- (b) Find the coordinates of D. (3)
- (c) Find the area of the square ABCD.

3.

in coordinate axes as shown, the point A is (2, 4, 0).	
Write down the coordinates of B, C and D.	(3)
Show that C is the midpoint of AD.	(1)
By using the components of the vectors \overrightarrow{OA} and \overrightarrow{OB} , calculate the size of angle AOB, where O is the origin.	(4)
Hence calculate the size of angle OAB.	(2)
	Write down the coordinates of B, C and D. Show that C is the midpoint of AD. By using the components of the vectors \overrightarrow{OA} and \overrightarrow{OB} , calculate the size of angle AOB, where O is the origin.

1994

A penny-farthing bicycle on display in a museum is supported by a stand at points A and C. A and C lie on the front wheel.

With coordinate axes as shown and 1 unit = 5cm, the equation of the rear wheel (the small wheel) is $x^2 + y^2 - 6y = 0$ and the equation of the front wheel is $x^2 + y^2 - 28x - 20y + 196 = 0$.

- (a) (i) Find the distance between the centres of the two wheels.
 - (ii) Hence calculate the clearance, ie the smallest gap, between the front and rear wheels. Give your answer to the nearest millimetre.(8)
- (b) B(7, 3) is half-way between A and C, and P is the centre of the front wheel.
 - (i) Find the gradient of PB.
 - (ii) Hence find the equation of AC and the coordinates of A and C. (8)
- 5. (a) Express $3\sin x^{\circ} \cos x^{\circ}$ in the form $k\sin(x-\alpha)^{\circ}$, where k > 0 and $0 \le \alpha \le 90$. (4)
 - (b) Hence find algebraically the values of x between 0 and 180 for which $3\sin x^{\circ} - \cos x^{\circ} = \sqrt{5}$. (4)
 - (c) Find the range of values of x between 0 and 180 for which $3\sin x^{\circ} - \cos x^{\circ} \le \sqrt{5}$. (2)

(2)

6. EXAMPLE

(i) Let f(x) = x³ + 5x - 1.
Since f(0) = −1 and f(1) = 5, the equation f(x) = 0 has a root in the interval 0 < x < 1 because f(0) < 0 and f(1) > 0.

,

1994

(ii) To find this root, the equation $x^3 + 5x - 1 = 0$ can be rearranged as follows:

$$x^{3} + 5x - 1 = 0$$
$$x^{3} + 5x = 1$$
$$x(x^{2} + 5) = 1$$
$$x = \frac{1}{x^{2} + 5}$$

We can write this result as a recurrence relation

$$x_{n+1} = \frac{1}{x_n^2 + 5}$$

and use it to find this root. In this example we will work to 3 decimal places and can therefore give the final answer to 2 decimal places.

(iii) For our first estimate, x_1 , we use the mid-point of the interval 0 < x < 1 [from part (i)].

$$x_1 = 0.5, \qquad x_2 = \frac{1}{0.5^2 + 5} = 0.190$$

$$x_2 = 0.190$$
 $x_3 = \frac{1}{0.190^2 + 5}$ $= 0.199$

$$x_3 = 0.199$$
 $x_4 = \frac{1}{0.199^2 + 5}$ $= 0.198$

$$x_4 = 0.198$$
 $x_5 = \frac{1}{0.198^2 + 5}$ $= 0.198$

Hence, correct to 2 decimal places, the root is x = 0.20.

- (a) Show that the equation $2x^3 + 3x 1 = 0$ has a root in the interval 0 < x < 0.5.
- (b) By using the technique described above, find this root correct to 2 decimal places.(6)

7. A yacht club is designing its new flag.

The flag is to consist of a red triangle on a yellow rectangular background.

In the yellow rectangle ABCD, AB measures 8 units and AD is 6 units. E and F lie on BC and CD, x units from B 6 and C as shown in the diagram.

(a) Show that the area, H square units, of the red triangle AEF is given by $H(x) = 24 - 4x + \frac{1}{2}x^2$. (4)

1994

(b) Hence find the greatest and least possible values of the area of triangle AEF. (8)

8. (a) $f(x) = 4x^2 - 3x + 5$. Show that f(x + 1) simplifies to $4x^2 + 5x + 6$ and find a similar expression for f(x - 1).

Hence show that
$$\frac{f(x+1) - f(x-1)}{2}$$
 simplifies to $8x - 3$. (5)

(b) $g(x) = 2x^2 + 7x - 8$.

Find a similar expression for $\frac{g(x+1) - g(x-1)}{2}$. (4)

(c) By examining your answers for (a) and (b), write down the

simplified expression for
$$\frac{h(x+1) - h(x-1)}{2}$$
, where $h(x) = 3x^2 + 5x - 1$. (2)

(6)

(9)

1994

- (b) The tangent to the parabola at A is the line y = x. Find the value of p. Hence find the equation of the parabola.
- (c) Using your answers for p and q, find the value of the discriminant of $x^2 + px + q = 0$. What feature of the above sketch is confirmed by this value? (2)
- **10.** The cargo space of a small bulk carrier is 60m long.

The shaded part of the diagram below represents the uniform cross-section of this space. It is shaped like the parabola with equation $y = \frac{1}{4}x^2$, $-6 \le x \le 6$, between the lines y = 1 and y = 9.

Find the area of this cross-section and hence find the volume of cargo that this ship can carry.

[END OF QUESTION PAPER]