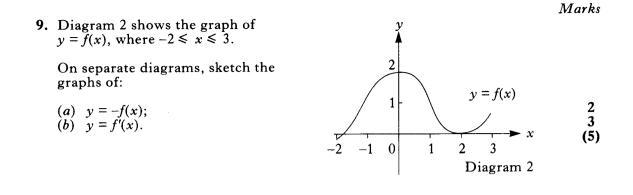
SCOTTISH CERTIFICATE OF EDUCATION 1991 WEDNESDAY, 8 MAY 9.30 AM - 11.30 AM

MATHEMATICS HIGHER GRADE Paper I

All questions should be attempted	Marks
1. Find the equation of the line through the point $(3, -5)$ which is para the line with equation $3x + 2y - 5 = 0$.	llel to (2)
2. The points A and B have coordinates (a, a^2) and $(2b, 4b^2)$ respective. Determine the gradient of AB in its simplest form.	ly. (2)
3. Show that the vectors $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ are perpendent	dicular. (3)
 4. Diagram 1 shows part of the graph of y = ke^{0.5x}. (a) Find the value of k. (b) The line with equation x = 1 intersects the graph at P. Find the coordinates of the point P. 	$ke^{0.5x} \qquad 1$ 2 (3) x
 5. Find the equation of the tangent to the curve y = 3x² + 2 at the point where x = 1. 	
6. When $f(x) = 2x^4 - x^3 + px^2 + qx + 12$ is divided by $(x - 2)$, the remainder is 114. One factor of $f(x)$ is $(x + 1)$. Find the values of p and q .	(4) (5)
7. (a) Show that the points $L(-5, 6, -5)$, $M(7, -2, -1)$ and $N(10, -4, 0)$ collinear.	are 4
(b) Find the ratio in which M divides LN.	1 (5)
8. Find the equation of the tangent at the point (3, 1) on the circle $r^2 + y^2 - 4r + 6y - 4 = 0$	

(5)



1991

10. A curve with equation y = f(x) passes through the point (2, -1) and is such that $f'(x) = 4x^3 - 1$.

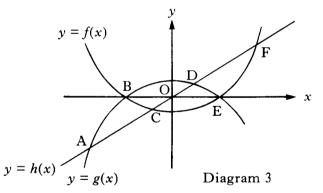
Express f(x) in terms of x.

11. On the day of his thirteenth birthday, a boy is given a sum of money to invest and instructions not to withdraw any money until after his eighteenth birthday. The money is invested and compound interest of 9% per annum is added each following birthday. By what percentage will the investment have increased when he withdraws his money just after his eighteenth birthday?

12. Given that sin A =
$$\frac{3}{4}$$
, where $0 < A < \frac{\pi}{2}$, find the **exact** value of sin2A. (3)

13. Given that
$$f(x) = 5(7 - 2x)^3$$
, find the value of $f'(4)$.

14. Diagram 3 is a rough sketch of the curves y = f(x), y = g(x) and y = h(x). A is (-4, -12), B is (-2, 0), C is (-1, -3), D is (1, 3), E is (2, 0) and F is (4, 12).



State the range of values of x for which:

(a)
$$f(x) \leq g(x);$$

(b) $h(x) \leq g(x) \leq f(x)$

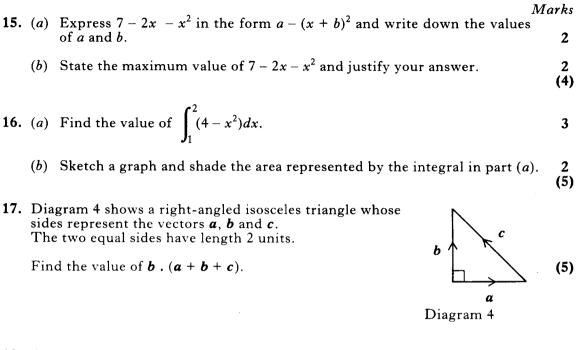
(b) h(x) < g(x) < f(x).

1 2 (3)

(5)

(4)

(4)



1991

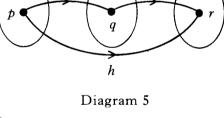
18. Given that k is a real number, show that the roots of the equation $kx^2 + 3x + 3 = k$ are always real numbers.

Ρ

- 19. Diagram 5 illustrates three functions f, g and h.The functions f and g are defined by
 - f(x) = 2x + 5 $g(x) = x^2 - 3.$

The function h is such that whenever f(p) = q and g(q) = r, then h(p) = r.

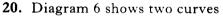
- (a) If q = 7, find the values of p and r.
- (b) Find a formula for h(x), in terms of x.



Ο

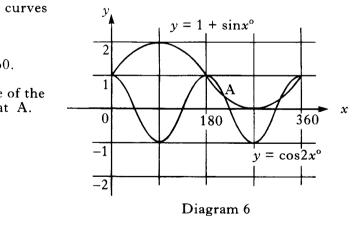
(5)

R



 $y = \cos 2x^{\circ}$ and $y = 1 + \sin x^{\circ}$, where $0 \le x \le 360$.

Find the x-coordinate of the point of intersection at A.



[END OF QUESTION PAPER]